Novel uses of Penning traps in nuclear structure physics

Mass measurements

Thanks to many colleagues at ISOLTRAP, SHIPTRAP and JYFLTRAP

Gaining Precision: From Past to Present ...

nuclear structure and nuclear astrophysics studies

Accuracy required for fundamental physics

Direct Mass Measurement Techniques in Nuclear Physics

Mass measurement programs for radionuclides (since 1994)

Lunney, Pearson & Thibault, Rev. Mod. Phys. 75 (2003)

N

Highlights from TRAP facilities

Complementary of Penning trap projects

Type of reaction	ISOL- TRAP	СРТ	SHIP- TRAP	JYFL- TRAP	LEBIT	MAFF- TRAP	TITAN	SMILE- TRAP	HI- TRAP	MATS/ FAIR
ISOL	x						x			
fusion		x	x							
IGISOL				x						
fragmen- tation					x				x	x
neutron- fission						x				
highly- charged							x	x	x	x
stable				(x)				x	x	
trap ass. spectros.	(x)			x						x

Present facilties are complementary New facilities are needed

Predictive power of mass models,

	1995 data (1768 nuclei)		2001 data (2135 nuclei)		"New" nuclei (382 nuclei)				
	σ	$\overline{\epsilon}$	σ	$\overline{\epsilon}$	σ	$\overline{\epsilon}$	σ_{mod}	$\overline{\epsilon_{mod}}$	R
HFBCS-1 (III.B.4)	0.718	0.102	0.805	0.180	1.115	0.494	1.056	0.460	1.47
HFB-1 (III.B.4)	0.740	0.040	0.822	0.131	1.123	0.510	1.091	0.494	1.47
HFB-2 (III.B.4)			0.674	0.000	0.769	0.377	0.724	0.356	
HFB-2' (III.B.4)	0.651	-0.039	0.702	0.058	0.857	0.470	0.789	0.437	1.21
FRDM (III.C.3)	0.678	0.023	0.676	0.072	0.655	0.247	0.485	0.202	0.71
TF-FRDM (III.C.5)	0.662	-0.034	0.655	-0.036	0.655	-0.085	0.511	-0.121	0.77
Duflo-Zuker (1995, 1999) (III.D.1)	0.346	-0.010	0.373	0.009	0.479	0.054	0.378	0.028	1.09
Koura et al. (2000) (III.D.2)	0.656	0.012	0.682	0.053	0.755	0.200	0.676	0.163	1.03
Nayak-Satpathy (1999) (III.D.3)	0.359	0.000	0.485	0.047	0.837	0.229	0.779	0.208	2.17
Audi-Wapstra (1995) (III.E.1)					0.317	0.053	0.122	-0.002	
Garvey and co-workers (1966, 1969) (III.E.2)	0.277	-0.010			0.717	0.127	0.653	0.096	2.36
Jänecke-Masson (1988) (III.E.2)	0.247	-0.010	0.319	0.010	0.540	0.070	0.451	0.071	1.83
Liran-Zeldes (1976) (III.E.4)	0.534	-0.005	0.586	-0.036	0.722	-0.226	0.554	-0.253	1.04

0.25 - 0.74 MeV

0.4 - 1 MeV

J. Duflo, A.P. Zuker, Phys. Rev. C 52 (1995) R23.

K. Blaum / Physics Reports 425 (2006) 1-78

Do we need precision measurements in nuclear physics at all ?

Absolutely: YES !

Nuclear mass-related observables

Absolute mass --- total binding energy --- Limits of nuclear existence

Mass differencies

First order derivatives

Nucleon (s. p.) binding energy (drip-line definition) Nucleon-pair binding energy (S_{2N}) Decay energy (Q_{β}, Q_{α}) Coulomb displacement energy (Isospin multiplets)

Second order derivatives

Pairing energy (odd-even staggering) Shell-gap energy (evolution of magicity) Energy difference of spin-orbit partner states $\rightarrow V_{s0}(\mathbf{l}\cdot\mathbf{s})$ Valence proton-neutron interaction energy δV_{pn}

Nuclear structure (10-100 keV)

Global correlations (100 keV)

Local correlations (10 keV)

shell structure, spin-orbit interaction, pairing, collectivity
Drip-line phenomena and halos (1 keV)

Nuclear astrophysics (1 keV)

Charge symmetry in nuclei (100 eV)

<u>Isospin multiplets</u> Coulomb energy differences

Test of Standard Model (< 100 eV) δm/m << 1-10-9</p>

Nuclear β decay. Electroweak interaction

- CVC theory and unitarity of CKM matrix
- Neutrinoless double β decay

Mass measurements for NUCLEAR STRUCTURE

Shell gap energy and magicity?

Shell-gap energies – a measure of magicity

Across the magic proton shell Z_0 $\delta_{2p} (Z_0, N) = S_{2p}(Z_0, N) - S_{2p}(Z_0+2, N)$

Across the magic neutron shell N_0

 $\delta_{2n}(Z, N_0) = S_{2n}(Z, N_0) - S_{2n}(Z, N_0 + 2)$

Shell gap energies – theory perspective

J.M. Pearson and S. Goriely, Nucl. Phys. A 777 (2006) 623-644

JYFLTRAP

Mass measurements of (refractory) neutron-rich nuclei

 $S_n \leq 3 \text{ MeV}$

New mass measurements of fission products

More examples

Comparison to mass predictions

(by A. Jokinen)

HFB-8, S. Goriely et al.

- "The best model in terms of RMS dev. (635 keV)
- Comparison to the new data:
 - □ Average deviation -80 keV
 - RMS deviation 513 keV

- ✓ Binding energies are needed for network calculations
- ✓ R-process path mostly out of reach in the laboratory
- \checkmark Mass predictions and extrapolations

\checkmark Plenty of models:

- ✓HFB-x, S. Goriely et al.
- ✓ FRDM by Möller and Nix
- ✓Kuty-models, T. Koura et al.,
- ✓Duflo-Zuker model
- ✓ AME2003 (G. Audi et al.,)
- New data is needed to benchmark different models and to provide new input

Charge radii and S_{2n}

Two-neutron binding energy across N=50

Experimental N=50 shell gap

S. Rahaman et al., Eur. Phys. J. A 34 (2007) 5

Pairing energies

Charge symmetry effects in nuclear structure

Mirror nuclei and states

Isospin multiplets

Mass measurements for nuclear astrophysics

Astrophysical processes

- ³²S beam impinging on ⁵⁴Fe or ^{nat}Ni target
- \checkmark
- 12 Q_{EC} and S_p values were improved ($^{80-83}Y$, $^{83-86,88}Zr$ and $^{85-88}Nb$) Mass of ^{84}Zr for the first time as well S_p -energies of ^{84}Zr and ^{85}Nb .

beta-endpoint measurements.

Large discrepancies for for Nb-isotopes

Need to revise S_p -values, and thus the location of the rp-process path

Endpoint of the rp-process

vp-process path

Newly proposed nucleosynthesis process for neutron-deficient nuclei with A>64 C. Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006)

Atomic mass measurements of n-rich radioisotopes

Astrophysics motivation: Location of r-process path, which in the 1st approximation proceeds along the path

where the neutron-capture and photodisintegration are in balance.

S_n=2-4 MeV

Mass predictions and r-process abundances

R-process abundances calculated with the HFBCS-1, ETFSI-2 and FRDM mass models in the framework of the canonical model. The r-process is characterized by $N_n = 10^{21} \text{ cm}^{-3}$, T = 1.2 × 10⁹ K and T = 2.1 s.

S.Goriely, Hyperfine interactions 132 (2001) 105